Projects

Chagos & Western Indian Ocean seabirds: connectivity & conservation

Red-footed booby, Sula sula. Picture my own

This ongoing project is part of the Bertarelli Programme in Marine Science.

Aims:

  • To understand the importance of the Chagos Archipelago Marine Protected Area for seabirds

  • To understand the causes and consequences of seabird connectivity across the Western Indian Ocean. In particular, the incidence and drivers of seabird prospecting, at-sea foraging habitat suitability, and the status of gene-flow among seabird colonies in the CA and WIO

Trevail, A. M., Nicoll, M. A. C., Freeman, R., Le Corre, M., Schwarz, J., Jaeger, A., Bretagnolle, V., Calabrese, L., Feare, C., Lebarbenchon, C., Norris, K., Orlowski, S., Pinet, P., Plot, V., Rocamora, G., Shah, N., & Votier, S. C. (2023). Tracking seabird migration in the tropical Indian Ocean reveals basin-scale conservation need. Current Biology, 33(23), 5247–5256.e4. https://doi.org/10.1016/j.cub.2023.10.060

Trevail, A., Wood, H., Carr, P., Dunn, R., Nicoll, M., Votier, S., & Freeman, R. (2023). Multi-colony tracking reveals segregation in foraging range, space use, and timing in a tropical seabird. Marine Ecology Progress Series, 724, 155–165. https://doi.org/10.3354/meps14479

Carr, P., Trevail, A., Bárrios, S., Clubbe, C., Freeman, R., Koldewey, H. J., Votier, S. C., Wilkinson, T., & Nicoll, M. A. C. (2021). Potential benefits to breeding seabirds of converting abandoned coconut plantations to native habitats after invasive predator eradication. Restoration Ecology, 29(5). https://doi.org/10.1111/rec.13386

Carr, P., Trevail, A. M., Koldewey, H. J., Sherley, R. B., Wilkinson, T., Wood, H., & Votier, S. C. (2023). Marine Important Bird and Biodiversity Areas in the Chagos Archipelago. Bird Conservation International, 33, e29. https://doi.org/10.1017/S0959270922000247

Hays, G. C., Koldewey, H. J., Andrzejaczek, S., Attrill, M. J., Barley, S., Bayley, D. T. I., Benkwitt, C. E., Block, B., Schallert, R. J., Carlisle, A. B., Carr, P., Chapple, T. K., Collins, C., Diaz, C., Dunn, N., Dunbar, R. B., Eager, D. S., Engel, J., Embling, C. B., … Curnick, D. J. (2020). A review of a decade of lessons from one of the world’s largest MPAs: Conservation gains and key challenges. Marine Biology, 167(11), 159. https://doi.org/10.1007/s00227-020-03776-w

 


ExMove: An open-source toolkit for processing and exploring animal tracking data in R

Alongside Liam Langley, Stephen Lang, & Luke Ozsanlav-Harris, we have created a toolkit for processing biologging data from tag downloads to online archive. All resources and code can be accessed via the ExMove website and GitHub repository.

Aims:

  • Collate and process raw data from tracking devices, such as GPS, GLS and Argos, into a standardised data set for analyses and archiving in online tracking databases.

  • Facilitate robust data cleaning by providing an interactive shiny app to aid parameter determination and visualisation.

  • Generate a learning tool for users to develop skills in animal movement analysis.

  • Maximize stability by using a few well-maintained core R packages, including here, tidyverse and sf.

  • Provide open source code, the initial steps of which can be adapted for biologging studies, such as merging and standardizing additional sensor data (e.g., immersion/TDR) from multiple individuals.

Liam Patrick Langley, Stephen Lang, Luke Ozsanlav-Harris, & Alice Trevail. (2023). ExMove: An open-source toolkit for processing and exploring animal tracking data in r. bioRxiv, 2023.05.16.540922. https://doi.org/10.1101/2023.05.16.540922

 


Environmental drivers of individual and population movement strategies

Black-legged kittiwake, Rissa tridactlya. Picture my own

I explored the influence of environmental heterogeneity, as a proxy for resource patchiness, on black-legged kittiwake, Rissa tridactyla, habitat selection, individual consistency, and reproductive success, during my PhD at the University of Liverpool.

Key findings:

  • Environmental heterogeneity most likely clusters resources into discrete patches. This provides foraging opportunity, creates competition among individuals with negative consequences for reproductive success and promotes individual specialisation in habitat selection.

  • Contributed to review of optimising biologging methods

Trevail, A. M., Green, J. A., Sharples, J., Polton, J. A., Arnould, J. P. Y., & Patrick, S. C. (2019). Environmental heterogeneity amplifies behavioural response to a temporal cycle. Oikos, 128(4), 517–528. https://doi.org/10.1111/oik.05579

Trevail, A. M., Green, J. A., Sharples, J., Polton, J. A., Miller, P. I., Daunt, F., Owen, E., Bolton, M., Colhoun, K., Newton, S., Robertson, G., & Patrick, S. C. (2019). Environmental heterogeneity decreases reproductive success via effects on foraging behaviour. Proceedings of the Royal Society B: Biological Sciences, 286(1904), 20190795. https://doi.org/10.1098/rspb.2019.0795

Trevail, A. M., Green, J. A., Bolton, M., Daunt, F., Harris, S. M., Miller, P. I., Newton, S., Owen, E., Polton, J. A., Robertson, G., Sharples, J., & Patrick, S. C. (2021). Environmental heterogeneity promotes individual specialisation in habitat selection in a widely distributed seabird. Journal of Animal Ecology, 90(12), 2875–2887. https://doi.org/10.1111/1365-2656.13588

Williams, H. J., Taylor, L. A., Benhamou, S., Bijleveld, A. I., Clay, T. A., Grissac, S., Demšar, U., English, H. M., Franconi, N., Gómez‐Laich, A., Griffiths, R. C., Kay, W. P., Morales, J. M., Potts, J. R., Rogerson, K. F., Rutz, C., Spelt, A., Trevail, A. M., Wilson, R. P., & Börger, L. (2020). Optimizing the use of biologgers for movement ecology research. Journal of Animal Ecology, 89(1), 186–206. https://doi.org/10.1111/1365-2656.13094

 


Polar seabird monitoring and foraging ecology

Antarctic petrel, Thalassoica antarctica. Picture my own

I joined the Norwegian Polar Institute on expeditions to the Antarctic (Tor field station) and Arctic (Svalbard) to help with regular seabird monitoring, and foraging ecology studies.

Key findings:

  • Prey density effects predator foraging strategies, most likely via group vigilance and defense

  • Individual foraging strategy is linked to diet in Antarctic petrels, with implications for population resiliance to climate change and fishery impacts

Busdieker, K. M., Patrick, S. C., Trevail, A. M., & Descamps, S. (2020). Prey density affects predator foraging strategy in an Antarctic ecosystem. Ecology and Evolution, 10(1), 350–359. https://doi.org/10.1002/ece3.5899

Descamps, S., Harris, S. M., Fluhr, J., Bustamante, P., Cherel, Y., Trevail, A. M., Brault-Favrou, M., & Patrick, S. C. (2022). Variation in Antarctic Petrel Foraging Ecology: Not All Individuals Specialize on Krill. Frontiers in Marine Science, 9, 809852. https://doi.org/10.3389/fmars.2022.809852

 


Seabirds as indicators of marine litter

Northern fulmar, Fulmaris glacialis. Picture by Geir Wing Gabrielsen

Monitoring plastic ingestion by northern fulmars, Fulmaris glacialis, in the Norwegian high Arctic, during my MSci at the University of Southampton.

Key findings:

  • Arctic marine litter levels were higher than expected from regional trends, and exceeded the ecological quality objective defined by OSPAR for European seas.

  • Highlighted the value of seabirds as bio-indicator species within marine policy, the connectivity of the global oceans, and the need for urgent regulation of plastic pollution in the Arctic

  • Contributed to ongoing monitoring and recommendation of standardised methods for quantifying debris ingestion in marine megafauna

Trevail, A. M., Gabrielsen, G. W., Kühn, S., & Van Franeker, J. A. (2015). Elevated levels of ingested plastic in a high Arctic seabird, the northern fulmar (Fulmarus glacialis). Polar Biology, 38(7), 975–981. https://doi.org/10.1007/s00300-015-1657-4

Provencher, J. F., Bond, A. L., Avery-Gomm, S., Borrelle, S. B., Bravo Rebolledo, E. L., Hammer, S., Kühn, S., Lavers, J. L., Mallory, M. L., Trevail, A. M., & Van Franeker, J. A. (2017). Quantifying ingested debris in marine megafauna: A review and recommendations for standardization. Analytical Methods, 9(9), 1454–1469. https://doi.org/10.1039/C6AY02419J